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Abstract
For fluids in a circularly symmetric external field, it is shown that the two-
dimensional Ornstein–Zernike (OZ) convolution integral becomes a simple
algebraic equation using the rotationally invariant basis in two dimensions.
Applying the usual closure relations, the full inhomogeneous pair correlation
functions become available. The method is here applied to a bulk uniform
fluid of hard disks, using the pair Percus–Yevick (PY) closure, but at the triplet
level in the hierarchy of distribution functions. Consequently, the obtained pair
distribution function and the osmotic coefficient are better than the pervious
results.

1. Introduction

The properties of bulk fluids are well understood at the two-particle level. A popular and
routine procedure is based on the Ornstein–Zernike (OZ) integral equation (in two or three
dimensions), closed with some approximate relation between the correlation functions. Only
recently have inhomogeneous fluids in planar geometry been described at a similar level [1–8].

The direct correlation function (DCF) plays an important role in describing the
thermodynamical properties and the structure of simple and multi-component fluids in two
and three dimensions [9–13]. This function, together with the pair distribution function,
constructs the OZ equation [14]. This integral equation [15] can be solved using an appropriate
approximation to obtain the DCF of many kinds of fluids [16–20]. The method of OZ
convolution integral factors, in three or two dimensions, makes the bulk systems easier to study.

The properties of a fluid in the vicinity of an isolated circularly symmetric external field
can hence be described fairly accurately. The Hamiltonian which specifies the system needs
only to depend on the positions of pairs of fluid particles via the two radial coordinates and the
mutual angle. The inhomogeneous (anisotropic, translationally variant) pair correlations can
be calculated explicitly. The results obtained by this method are at the two-particle level, and
should be distinguished from the essentially single approaches which use integral equations
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for a bulk mixture, even though the components are highly asymmetric in size, charge, or
concentration.

A particularly interesting possibility is to consider the circular inhomogeneity to be itself
a particle of the fluid (which must be specified by a circularly symmetric pair potential). The
consequent inhomogeneous density profile corresponds to the pair distribution function of the
bulk fluid.

This paper is divided into two parts. In the following section the circularly inhomogeneous
fluid problem is formulated. It is shown that the two-dimensional OZ equation is transformed
to an algebraic equation using the rotationally invariant basis in two dimensions. These render
feasible the computations in the general case. Examples of closures for the inhomogeneous
correlation functions and equations to determine the density profile are given in circular
geometry. The second part deals specifically with hard disks and the Percus–Yevick (PY)
closure. The Treizenberg–Zwanzig (TZ) equation for the profile is applied to this fluid with a
hard-disk inhomogeneity. Finally, the results are discussed.

2. Circular inhomogeneous system

2.1. Factorization of the OZ equation

Consider a classical fluid in which the Hamiltonian consists only of one- and two-body terms.
A circularly inhomogeneous system is one in which the external potential V (r) depends only
on the distance from the origin r = |r|, and the pair potential u(r1, r2, θ12) depends on
the particles’ radial coordinates and mutual angle. This contains circularly symmetric pair
potentials such as a hard disk. The inhomogeneous one- and two-particle distribution functions
exhibit the same symmetries as the Hamiltonian.

The OZ equation in two dimensions is

h(r1, r2, θ12) = c(r1, r2, θ12) +
∫

dr3 c(r1, r3, θ13)ρ(r3)h(r3, r2, θ32), (1)

where h ≡ g − 1 is the total correlation function, g is the radial distribution function, c is
the DCF, and ρ is the singlet density profile. The surface element in polar coordinates is
dr = r dr dθ .

Now use the rotationally invariant basis in two dimensions as [21]

f (r1, r2, θ12) = f (1, 2) =
∞∑

m,n=−∞
f mn(r1, r2)�

mn(θ1, θ2), (2)

where f is an arbitrary function and the invariants �mn(θ1, θ2) are given by

�mn(θ1, θ2) = ei(mθ1+nθ2). (3)

These invariants are orthogonal and the projections (or the expansion coefficients) f mn can be
written as

f mn(r1, r2) = 1

4π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2 f (r1, r2, θ12)�

mn(θ1, θ2). (4)

We expand the correlation functions in equation (1) and use the orthogonality of invariants to
achieve the desired factorization:

ymn(r1, r2) = hmn(r1, r2) − cmn(r1, r2)

= 2π

∞∑
m′=−∞

∫ ∞

0
r3 dr3 ρ(r3)c

m,−m′
(r1, r3)h

m′,n(r3, r2), (5)
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where y ≡ h − c is an auxiliary function. Since the correlation functions, and thereby
the integrand, decay rapidly to zero, the upper limit of the integral can be made finite. In
equation (6) we use m ′ = −5 to 5 in our calculations.

2.2. Closure and profile relations

The OZ equation contains three unknown functions—the density, the inhomogeneous direct
and total correlation functions. Thus, two more equations are required. There are several
approximate closures relating the correlation functions which do not depend on translational
invariance and can hence be applied directly to the inhomogeneous problem. Two common
examples are PY,

c(r1, r2, θ12) = g(r1, r2, θ12){1 − exp[βu(r1, r2, θ12)]}, (6)

and the hypernetted chain,

h(r1, r2, θ12) = exp[h(r1, r2, θ12) − c(r1, r2, θ12) − βu(r1, r2, θ12)] − 1. (7)

Here β = 1
kBT is the inverse temperature, and u is the pair potential.

Several exact equations relate the density profile to the external field V [22–27]. One of
these popular equations involves the total correlation function [22, 23]:

∇ρ(r1) = −βρ(r1)∇V (r1) − βρ(r1)

∫
dr2 ρ(r2)h(r1, r2)∇V (r2). (8)

For circularly inhomogeneous systems, this reads

ρ ′(r1) = −βρ(r1)V ′(r1) − βρ(r1)

∫ ∞

0

∫ 2π

0
r2 dr2 dθ2 ρ(r2)h(r1, r2, θ12) cos θ12V ′(r2)

= −βρ(r1)V ′(r1) − πβρ(r1)

∫ ∞

0
r2 dr2 ρ(r2)[h1−1(r1, r2)

+ h−11(r1, r2)]V ′(r2), (9)

where the prime denotes differentiation with respect to argument. The boundary condition is
that the profile should equal the bulk density at large r .

Note that the closures constitute an approximation, as in the bulk case, whereas the OZ and
TZ equations are exact. However, the closure is the only approximation introduced (besides
those necessary for the numerical solution of the problem) and hence the inhomogeneous
problem can be solved with an accuracy comparable to that usually achieved in bulk. In fact,
for the case when the circular inhomogeneity is a particle of the fluid, the closure is applied at
the triplet level, one step higher in the hierarchy of distribution functions. Hence one expects
better results for this problem than the usual bulk formulation.

3. Percus–Yevick hard disk

3.1. Hamiltonian, profile and closure

The method derived above will now be illustrated by application to a hard-disk fluid. This fluid
is a suitable test case in two dimensions. The results give some information on the accuracy
of the procedure, and hopefully provide new perspectives on the behavior of the correlation
functions. The actual data obtained may be applied to other fluids in two dimensions using the
hard-disk fluid as a reference.

3
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Atoms of a hard-disk fluid interact via a pair potential

u(r1, r2, θ12) =
{

∞, r12 < d

0, r12 > d ,
(10)

where r12 is the distance between the particles and d is the hard-disk diameter. Now consider a
hard-disk particle of diameter D and fixed at the origin. This causes an external potential

V (r) =
{

∞, r < S

0, r > S,
(11)

where S = (d + D)/2. At this time in the analysis, take D �= d . However, when D = d , the
fixed particle is just one of the particles of the fluid.

First, define the continuous density function

ρc(r) ≡ ρ(r)eβV (r), (12)

and note that

βV ′(r)e−βV (r) = d

dr
(1 − e−βV (r)) = −δ(r − S), (13)

where δ(r) is the Dirac delta function. Then, for the present problem, equation (9) becomes

ρ ′(r) = ρc(r)δ(r − S) + πρ(r)ρc(S)S[h1−1(r, S) + h−11(r, S)]. (14)

This may be integrated to yield (r > S)

ρ(r) = ρ(R) + πρc(S)S
∫ r

R
dr ′ ρ(r ′)[h1−1(r ′, S) + h−11(r ′, S)], (15)

where ρc(S) = ρ(S+) is the contact density, and R is some large radius (several hard-disk
diameters) after which bulk properties are assumed.

For a hard-disk fluid the PY closure equation (6) becomes

c(r1, r2, θ12) = 0, r12 > d, (16)

which is supplemented with the exact result,

g(r1, r2, θ12) = 0, r12 < d. (17)

This is closure to be used for the present problem, since it works well for a bulk hard-disk fluid
where the results exist [28–33].

3.2. Osmotic coefficient and compressibility

Results will now be presented for a bulk two-dimensional uniform fluid of hard-disks, i.e.
D = S = d . Since, in this case, the method corresponds to using the closure at the triplet level,
we shall designate our results ‘PY3’ to distinguish them from the analytic solution of the PY
closure for the bulk pair correlation (‘PY2’).

The osmotic coefficient is related to the pressure by

φ = p

ρkBT
, (18)

where ρ denotes the bulk density. For hard disks in two dimensions the virial equation is

φv = 1 + 2ηg(d+), (19)

where the packing fraction

η ≡ (π/4)ρd2 (20)

4
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Table 1. Osmotic coefficients: virial (φv), and compressibility (φc, in parenthesis).

ρd2 MC PY3 PY2 CS

0.10 1.191 1.184 1.179 1.178
(1.184) (1.184)

0.20 1.682 1.537 1.412 1.408
(1.538) (1.540)

0.30 1.920 1.837 1.716 1.712
(1.830) (1.851)

0.40 2.641 2.322 2.131 2.127
(2.311) (2.321)

0.50 2.938 2.854 2.713 2.713
(2.691) (2.702)

0.60 3.957 3.791 3.546 3.579
(3.767) (3.852)

0.70 4.978 4.872 4.795 4.938
(4.902)

0.80 7.001 6.855 6.795 7.248
(7.002)

is the only parameter required to specify the hard-disk fluid nontrivially. In the circular system
when the inhomogeneity is an atom of the fluid, the one-particle distribution (the density
profile) corresponds to the pair distribution function of the bulk. Hence, the value of the bulk
radial distribution function at contact is here

g(d+) = ρ0(d
+)/ρ, (21)

where the subscript indicates that the singlet profile is about an atom fixed at the origin.
One can also calculate the osmotic coefficient via the compressibility relation

φc = 1

ρ

∫ ρ

0

dρ ′

ρ ′kBTκT
, (22)

where the isothermal compressibility κT is given by

ρkBT κT = [1 + ρh̃(0)] ≡ 1 + ρ

∫
dr h(r). (23)

The Carnahan–Starling (CS) equation of state for the hard-disk fluid is

φCS = 1

(1 − η)2
. (24)

Table 1 compares the osmotic coefficient calculated by two different thermodynamic routes:
compressibility and virial, with Monte Carlo (MC) results. It is manifest that the PY3 virial
performs better than the PY2, being in closer agreement with the simulations. The PY3 virial
and compressibility results are also more consistent than the PY2.

The compressibility osmotic coefficient is less reliable at higher densities. The radial
distribution function decays more slowly at higher couplings, and it becomes exceedingly
difficult to calculate the isothermal compressibility with numerical accuracy. This is evident
from the data in table 2, and is the reason that values for κT are not usually available in
numerical schemes.

The fundamental reason why PY3 performs better than PY2 is because the approximate
closure is used at a higher level in the hierarchy of distribution functions. The link between the
triplet and pair levels is the exact profile relationship. The computations are more demanding
than the usual bulk numerical procedures (in general).

5
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Figure 1. Radial distribution function g(r) as given by PY3 (solid line) and PY2 (dashed line) at
ρd2 = 0.794. The dots are MC data.

Table 2. Isothermal compressibility, ρkBT κT .

ρd2 PY3 PY2

0.10 0.7305 0.7308
0.20 0.6594 0.6592
0.30 0.3649 0.3623
0.40 0.2813 0.2740
0.50 0.1375 0.1279
0.60 0.0952 0.0934
0.65 0.0873 0.0854
0.70 0.0588 0.0670
0.75 0.0340 0.0427

3.3. Pair and triplet distribution functions

We use equations (5), (6) and (15) simultaneously to obtain the results, such as the expansion
coefficients of the correlation functions and the density profile.

Figure 1 displays a comparison of the bulk radial distribution function given by the MC,
PY2, and PY3 approximations. In the latter approach, g(r) ≡ ρ0(r)/ρ, and these data follow
the pronounced oscillations of the function quite accurately (and somewhat better than PY2).
Lengths here and below are in units of the hard-disk diameter d . Values of g(r) are tabulated
in table 3 on a coarse grid in the x–y plane. A direct comparison between PY3 and PY2 is
possible from the values below and above the diagonal respectively.

The inhomogeneous pair correlation function calculated in the PY3 scheme, g0(r1, r2),
gives, when multiplied by ρ, the probability of finding an atom at r2, given atoms fixed at r1

and the origin. Hence, it is simply related to the bulk triplet correlation function by

g(0, r1, r2) ≡ g(r1)g(r2)g0(r1, r2). (25)

6
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Table 3. Radial distribution function g(r)r = x i + yj: PY3 (on and below) and PY2 (above) the
diagonal x = y, for ρd2 = 0.794.

0.00 0.25 0.50 0.75 1.00 1.25 1.5 1.75 2.00 2.25 2.50

0.000 0.000 0.000 0.000 0.000 4.261 1.662 0.630 0.759 1.385 1.352 0.832
0.25 0.000 0.000 0.000 0.000 3.991 1.011 0.541 0.633 1.481 0.812 0.722
0.50 0.000 0.000 0.000 0.000 3.061 0.732 0.550 0.769 1.455 0.846 0.735
0.75 0.000 0.000 0.000 0.000 1.012 0.653 0.550 0.891 1.501 0.875 0.672
1.00 4.231 4.005 3.031 1.328 0.743 0.650 0.859 1.475 1.225 0.901 0.792
1.25 1.642 1.015 0.751 0.593 0.662 0.509 1.490 1.469 0.875 0.751 0.779
1.50 0.642 0.560 0.555 0.540 0.882 1.493 1.235 1.040 0.971 0.943 1.003
1.75 0.753 0.655 0.779 0.853 1.481 1.473 1.041 0.951 0.972 0.987 1.025
2.00 1.398 1.501 1.495 1.515 1.311 0.885 1.012 0.969 0.959 0.984 1.025
2.25 1.367 0.855 0.864 0.881 0.988 0.961 0.955 0.981 1.029 1.028 1.005
2.50 0.859 0.765 0.753 0.680 0.801 0.887 1.005 1.021 1.023 1.002 0.988
2.75 0.783 0.694 0.702 0.816 1.007 1.024 1.025 1.015 0.995 0.985 0.990
3.00 1.025 1.023 1.022 1.029 1.027 1.017 1.003 0.991 0.986 0.991 1.001
3.25 1.142 1.020 1.081 1.004 1.000 0.995 0.986 0.988 0.996 1.004 1.007
3.50 0.988 0.989 0.986 0.987 0.990 0.995 1.002 1.007 1.007 1.007 1.002
3.75 0.991 0.992 0.990 0.995 0.997 1.004 1.002 1.002 1.001 1.005 0.997
4.00 1.004 1.004 1.004 1.003 1.005 1.006 1.003 1.000 0.997 0.996 0.997
4.25 1.001 1.002 1.003 1.001 1.002 0.995 0.997 0.995 0.997 0.997 0.996
4.50 0.990 1.011 0.999 0.999 0.985 0.995 0.998 0.996 0.995 0.999 0.998
4.75 0.995 0.998 0.998 1.006 1.007 1.001 1.002 1.003 1.002 1.001 1.001
5.00 1.001 0.998 0.998 1.001 1.001 1.002 1.001 1.001 1.001 1.000 1.002

The triplet distribution function approaches unity only when all of the trio are far apart.
The Kirkwood superposition approximation [34] consists of approximating the

inhomogeneous pair correlation everywhere by its bulk form,

g0(r1, r2) ≈ g(r12). (26)

This approximation is exact asymptotically, when any one of the three atoms is far separated
from the others.

A direct and extensive test of the superposition approximation can be made from the data
in tables 4 and 5. These contain g0(r1, r2) on the same mesh as g(r) in table 3.

Figure 2 gives the PY3 radial distribution function g(r) at the density ρd2 = 0.730. These
are compared to the triplet correlation function g(0, r1, r2) for isoceles triangle configurations,
(r1 = r2 = s, r12 = r), divided by g(s)2. This ratio (which is just g0(r1, r2)) approaches
g(r) for large s or large r , as is to be expected from the asymptotic nature of the superposition
approximation.

4. Conclusion

In this paper a method has been given for treating circularly inhomogeneous systems, in two
dimensions, with integral equation theories. The full inhomogeneous pair correlation functions
are available from the procedure. That the approach is practical was demonstrated by the results
obtained for a hard-disk fluid. Those data were more accurate than when the same pair closure
is used in the usual bulk formulation of the problem, evidently because the approximation
is being applied at a higher level in the hierarchy of distribution functions. The formalism
introduced in this paper allows application of this principle to more general fluids, in two
dimensions, and arbitrary closures, and at a further level (the triplet level) in the hierarchy.
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Table 4. Inhomogeneous pair correlation function g0(r1, r2), as a function of r2 = (x, y), with
one disk fixed at the origin (0, 0) and the second at r1 = (0, 1), and ρd2 = 0.794.

0.00 0.25 0.50 0.75 1.00 1.25 1.5 1.75 2.00 2.25 2.50

0.00 . . . . . . . . . . . . 2.198 1.190 0.684 0.998 1.366 1.259 0.833
0.25 . . . . . . . . . . . . 2.488 0.678 0.547 0.696 1.495 0.761 0.722
0.50 . . . . . . . . . . . . 2.742 0.762 0.582 0.702 1.425 0.856 0.746
0.75 . . . . . . . . . 0.000 2.122 1.142 0.600 0.703 1.444 0.951 0.692
1.00 0.000 0.000 0.000 0.000 2.890 1.412 0.838 1.170 1.209 1.030 0.805
1.25 0.000 0.000 0.000 0.000 2.996 1.144 1.254 1.158 0.959 0.896 0.761
1.50 0.000 0.000 0.000 0.000 2.446 1.581 0.829 0.869 1.157 1.054 1.067
1.75 0.000 0.000 0.000 2.391 1.663 1.127 0.761 0.966 1.183 1.015 0.934
2.00 3.012 2.845 2.138 1.543 1.062 0.633 0.931 1.146 1.084 0.926 0.946
2.25 1.536 0.953 0.816 0.711 0.813 0.886 1.020 1.143 1.014 0.939 0.975
2.50 0.773 0.657 0.623 0.571 0.767 0.975 1.146 1.024 0.942 0.952 1.010
2.75 0.676 0.582 0.629 0.818 1.110 1.112 1.014 0.947 0.945 0.992 1.032
3.00 1.082 1.089 1.105 1.104 1.056 0.990 0.948 0.952 0.992 1.028 1.025
3.25 1.068 1.056 1.099 0.992 0.967 0.957 0.966 0.999 1.029 1.025 0.998
3.50 0.970 0.969 0.961 0.960 0.969 0.991 1.019 1.034 1.020 0.997 0.985
3.75 0.972 0.974 0.976 0.992 1.006 1.023 1.019 1.005 0.990 0.990 0.991
4.00 1.016 1.014 1.016 1.018 1.018 1.011 0.998 0.989 0.987 0.994 1.004
4.25 1.010 1.010 1.009 1.002 0.998 0.991 0.988 0.994 0.999 1.004 1.005
4.50 0.986 1.006 0.993 0.993 0.990 0.991 0.998 1.002 1.005 1.006 1.001
4.75 0.992 0.992 0.996 0.998 1.001 1.003 1.005 1.005 1.001 0.998 0.995
5.00 1.002 1.002 1.004 1.004 1.004 1.003 1.002 0.999 0.998 0.997 0.998

Table 5. Same as table 4, but with r1 = (0, 3).

0.00 0.25 0.50 0.75 1.00 1.25 1.5 1.75 2.00 2.25 2.50

0.00 . . . . . . . . . . . . 2.269 1.358 0.813 0.935 1.258 1.266 0.882
0.25 . . . . . . . . . . . . 2.235 0.822 0.768 0.816 1.350 0.736 0.765
0.50 . . . . . . . . . . . . 1.980 0.667 0.791 0.913 1.314 0.810 0.780
0.75 . . . . . . . . . 0.975 0.644 0.727 0.740 0.920 1.372 0.897 0.735
1.00 0.960 1.010 1.122 1.168 0.893 0.873 0.973 1.318 1.115 0.959 0.868
1.25 0.805 0.840 0.880 0.950 0.970 0.807 1.495 1.299 0.809 0.882 0.838
1.50 0.781 0.775 0.771 0.772 0.877 1.484 1.232 1.043 0.968 0.943 1.131
1.75 1.302 1.254 1.045 0.660 1.144 1.180 1.033 1.113 1.038 0.948 0.976
2.00 3.118 3.010 2.372 1.748 1.148 0.643 0.932 1.114 1.060 0.936 0.959
2.25 0.000 0.000 0.000 2.326 1.401 0.869 0.766 0.967 1.136 1.015 0.954
2.50 0.000 0.000 0.000 0.000 1.923 0.992 0.802 0.871 1.106 1.052 0.988
2.75 0.000 0.000 0.000 0.000 2.676 1.320 0.812 0.838 1.068 1.074 0.964
3.00 0.000 0.000 0.000 0.000 3.000 1.399 0.831 0.830 1.063 1.079 0.967
3.25 0.000 0.000 0.000 0.000 2.700 1.328 0.824 0.839 1.089 1.073 0.960
3.50 0.000 0.000 0.000 0.000 3.007 1.087 0.784 0.978 1.108 1.051 0.953
3.75 0.000 0.000 0.000 2.452 1.387 0.880 0.795 0.985 1.115 1.056 0.956
4.00 2.828 2.629 2.025 1.355 0.919 0.781 0.891 0.983 1.120 1.054 0.953
4.25 1.319 1.250 1.049 1.148 0.785 0.850 1.027 1.085 1.092 0.953 0.977
4.50 0.805 0.815 0.777 0.793 0.875 1.025 1.125 1.045 0.959 0.956 1.004
4.75 0.825 0.834 0.875 0.974 1.095 1.122 1.044 0.965 0.951 0.988 1.023
5.00 1.105 1.112 1.133 1.135 1.086 1.012 0.955 0.950 0.985 1.020 1.021

Treating the inhomogeneous fluid at the two-particle level is equivalent to describing a
three-body interaction, the fixed particle being the third member of the trio. As we know, the

8
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Figure 2. The inhomogeneous pair correlation function g0(r1, r2) for r1 = r2 = s as a function
of r12 = r , compared to the PY3 radial distribution function g(r) (solid line). The long dashes and
short dashes correspond to s = 1 and 1.35, respectively. The density is ρd2 = 0.730.

correlations reach to the bulk, one away from the fixed particle and, according to the accuracy
used in this paper, the two-level correlation is enough to achieve the results and the triplet level
is not required.
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