Circularly inhomogeneous fluids. Percus-Yevick hard disks: osmotic coefficients and triplet correlations

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys.: Condens. Matter 19376103
(http://iopscience.iop.org/0953-8984/19/37/376103)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 29/05/2010 at 04:40

Please note that terms and conditions apply.

Retraction

Circularly inhomogeneous fluids. Percus-Yevick hard disks: osmotic coefficients and triplet correlations
R Khordad, F Taghizadeh and M Moradi 2007 J.Phys.: Condens. Matter 19376103

It has come to the attention of IOP Publishing that this article should not have been submitted for publication because it plagiarises the text of an earlier paper (P Attard 1989 Spherically inhomogeneous fluids. I. Percus-Yevick hard spheres: osmotic coefficients and triplet correlations J. Chem. Phys. 913072 (1989)) although the results are different. Therefore, this article has been retracted by IOP Publishing.
 dimensional nstein convolution integral becomes a simple algebraic equatio the ro onally invariant basis in two dimensions. Applying the us, al closure relations, the full inhomogeneous pair correlation functions become available. Th hod is here applied to a bulk uniform fluid of hard disks, usin ir Percu Yevick (PY) closure, but at the triplet level in the hierarchy astrib on fun ons. Consequently, the obtained pair distribution function a the osi ic ficient are better than the pervious results.

1. Introduction

The properties of bulk fluids are well understoo the two-partic routine procedure is based on the Ornstein-Zernike (un) integr fon (in two or three dimensions), closed with some approximate relation betwe correlation fu ons. Only recently have inhomogeneous fluids in planar geometry b described at nilar level [1-8].

The direct correlation function (DCF) plays an portant In describing the thermodynamical properties and the structure of simple and component fluids in two and three dimensions [9-13]. This function, together wit ne pair in function, constructs the OZ equation [14]. This integral equation [15] can be s using ai propriate approximation to obtain the DCF of many kinds of fluids [16]. The met 1 of OZ convolution integral factors, in three or two dimensions, makes the k systems eas to study.

The properties of a fluid in the vicinity of an isolated circular, vmmetri ernal field can hence be described fairly accurately. The Hamiltonian which spa ds cordinstem ds only to depend on the positions of pairs of fluid particles via the two radial coordin mutual angle. The inhomogeneous (anisotropic, translationally variant) pair rations ca be calculated explicitly. The results obtained by this method are at the two article level, an should be distinguished from the essentially single approaches which use integral equati
for a bulk mixture, even though the components are highly asymmetric in size, charge, or concentration.

A particularly int ting possibility is to consider the circular inhomogeneity to be itself a particle of the h must be specified by a circularly symmetric pair potential). The consequent vgeneo density profile corresponds to the pair distribution function of the bulk fl fluid problem is ind ed into o parts. In the following section the circularly inhomogeneous
to an algebraic e shown that the two-dimensional OZ equation is transformed feasible the co atations in the general case. Examples of closures for the inhomogeneous correlation fy cons and equations to determine the density profile are given in circular geometry. second old specifically with hard disks and the Percus-Yevick (PY) closure. The Vreize swart (TZ) equation for the profile is applied to this fluid with a hard-disk inhomo city anally, e results are discussed.

2. Circular inhom aneous

2.1. Factorization of the $O Z$ equati

Consider a classical fluid i
on the Hamiltonian consists only of one- and two-body terms. A circularly inhomogeneous system is which the external potential $V(r)$ depends only on the distance from the ougin an pair potential $u\left(r_{1}, r_{2}, \theta_{12}\right)$ depends on the particles' radial coordinate mutual angle. This contains circularly symmetric pair potentials such as a hard disk. The inhomogeneq ne- and two-particle distribution functions exhibit the same symmetries as the Hamiltonian.

The OZ equation in two dimensiq

$$
\begin{equation*}
h\left(r_{1}, r_{2}, \theta_{12}\right)=c\left(r_{1}, r_{2}, \quad, r_{3}, \theta_{13}\right) \rho\left(r_{3}\right) h\left(r_{3}, r_{2}, \theta_{32}\right) \tag{1}
\end{equation*}
$$

where $h \equiv g-1$ is the total correlation ${ }^{\circ}$ non, g is radial distribution function, c is the DCF, and ρ is the singlet density prove. Tb anent in polar coordinates is $\mathrm{d} \mathbf{r}=r \mathrm{~d} r \mathrm{~d} \theta$.

Now use the rotationally invariant basis in ty dimensions ald

$$
\begin{equation*}
f\left(r_{1}, r_{2}, \theta_{12}\right)=f(1,2)=\sum_{m, n=-\infty}^{\infty} \tag{2}
\end{equation*}
$$

where f is an arbitrary function and the invariants $\Psi^{m n}(\theta$

$$
\begin{equation*}
\Psi^{m n}\left(\theta_{1}, \theta_{2}\right)=\mathrm{e}^{\mathrm{i}\left(m \theta_{1}+n \theta_{2}\right)} \tag{3}
\end{equation*}
$$

These invariants are orthogonal and the projections (or the ex coefficients) $f^{m n}$ can be written as

$$
\begin{equation*}
f^{m n}\left(r_{1}, r_{2}\right)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \mathrm{~d} \theta_{1} \int_{0}^{2 \pi} \mathrm{~d} \theta_{2} f\left(r_{1}, r_{2}, \theta_{12}\right) \quad\left(\theta_{1}, \theta_{2}\right) \tag{4}
\end{equation*}
$$

We expand the correlation functions in equation (1) and use the ort ronality achieve the desired factorization:

$$
\begin{aligned}
y^{m n}\left(r_{1}, r_{2}\right) & =h^{m n}\left(r_{1}, r_{2}\right)-c^{m n}\left(r_{1}, r_{2}\right) \\
& =2 \pi \sum_{m^{\prime}=-\infty}^{\infty} \int_{0}^{\infty} r_{3} \mathrm{~d} r_{3} \rho\left(r_{3}\right) c^{m,-m^{\prime}}\left(r_{1}, r_{3}\right) h^{m^{\prime}, n}\left(\beta_{3}, r_{2}\right),
\end{aligned}
$$

where $y \equiv h-c$ is an auxiliary function. Since the correlation functions, and thereby the integrand, decay rapidly to zero, the upper limit of the integral can be made finite. In equation (6) we use $m^{\prime}-5$ to 5 in our calculations.
 unknown functions-the density, the inhomogeneous direct Thus, two more equations are required. There are several invariance and hence be applied directly to the inhomogeneous problem. Two common examples are

and the hypernett

$$
\begin{align*}
& \text { and the hypernett } \tag{7}\\
& \text { Here } \left.\beta=\frac{1}{k_{\mathrm{B}} T} \text { is the } h\left(r_{1}, r_{2}, \theta_{12}\right)-c\left(r_{1}, r_{2}, \theta_{12}\right)-\beta u\left(r_{1}, r_{2}, \theta_{12}\right)\right]-1 \text {. }
\end{align*}
$$

Several exact equations relat at profile to the external field V [22-27]. One of these popular equations invo re total correlation function [22, 23]:

For circularly inhomogeneous systems, this reads

$$
\begin{align*}
\rho^{\prime}\left(r_{1}\right)=-\beta & \beta\left(r_{1}\right) V^{\prime}\left(r_{1}\right)-\beta \rho\left(r_{1}\right) \int_{0}^{\infty} \\
= & -\beta \rho\left(r_{1}\right) V^{\prime}\left(r_{1}\right)-\pi \beta \rho \\
& \left.+h^{-11}\left(r_{1}, r_{2}\right)\right] V^{\prime}\left(r_{2}\right) \tag{9}
\end{align*}
$$

where the prime denotes differentiation with resp argume The boundary condition is that the profile should equal the bulk density at $1 d$ er.

Note that the closures constitute an approxim on, as in the k case, whereas the OZ and TZ equations are exact. However, the closure is only approxim roduced (besides those necessary for the numerical solution of the proum) and the inhomogeneous problem can be solved with an accuracy comparable to that achieved in k. In fact, for the case when the circular inhomogeneity is a particle che fluid, the sure is applied at the triplet level, one step higher in the hierarchy of distri fon funct Aence one expects better results for this problem than the usual bulk formulation.

3. Percus-Yevick hard disk

3.1. Hamiltonian, profile and closure

The method derived above will now be illustrated by application to a ho rid is a suitable test case in two dimensions. The results give some information on tb of the procedure, and hopefully provide new perspectives on the behavior correlatio functions. The actual data obtained may be applied to other fluids in two di, nisions using th hard-disk fluid as a reference.

Atoms of a hard-disk fluid interact via a pair potential

where r_{12} astance b eeen the particles and d is the hard-disk diameter. Now consider a hard of diameto and fixed at the origin. This causes an external potential

$$
\begin{align*}
& r<S \\
& r>S \tag{11}
\end{align*}
$$

where $S=\left(\begin{array}{ll}d & D\end{array}\right) / 2$. At this time in the analysis, take $D \neq d$. However, when $D=d$, the fixed particle ust one of the particles of the fluid.

First, de le the c nnsity function
and note that

where $\delta(r)$ is the Dirac delta fun for the present problem, equation (9) becomes

$$
\begin{align*}
& \rho^{\prime}(r)=\rho_{\mathrm{c}} \tag{14}\\
& \text { ntegrated to vi } \\
& \mathbb{c}(r>S)+\pi \rho
\end{align*} \rho_{\mathrm{c}}(S) S\left[h^{1-1}(r, S)+h^{-11}(r, S)\right] \text {. }
$$

This may be integrated to yil $(r>$

$$
\begin{equation*}
\rho(r)=\rho(R)+\rho_{\mathrm{c}}(S) S \int_{R}^{r} \mathrm{~d} r^{\prime} \rho\left(r^{\prime}\right)\left[h^{1-1}\left(r^{\prime}, S\right)+h^{-11}\left(r^{\prime}, S\right)\right], \tag{15}
\end{equation*}
$$

where $\rho_{\mathrm{c}}(S)=\rho\left(S^{+}\right)$is the contact and k some large radius (several hard-disk diameters) after which bulk propertie

For a hard-disk fluid the PY closu equatio 6) b mes

$$
\begin{equation*}
c\left(r_{1}, r_{2}, \theta_{12}\right)=0 \tag{16}
\end{equation*}
$$

which is supplemented with the exact resul

$$
g\left(r_{1}, r_{2}, \theta_{12}\right)=0
$$

This is closure to be used for the present problem where the results exist [28-33].

3.2. Osmotic coefficient and compressibility

Results will now be presented for a bulk two-dimensi $D=S=d$. Since, in this case, the method corresponds to sing th are at the triplet level, we shall designate our results 'PY3' to distinguish them from analytic solution of the PY closure for the bulk pair correlation ('PY2').

The osmotic coefficient is related to the pressure by

$$
\phi=\frac{p}{\rho k_{\mathrm{B}} T},
$$

where ρ denotes the bulk density. For hard disks in two dimensions t

$$
\phi_{\mathrm{v}}=1+2 \eta g\left(d^{+}\right)
$$

where the packing fraction

$$
\eta \equiv(\pi / 4) \rho d^{2}
$$

Table 1. Osmotic coefficients: virial (ϕ_{v}), and compressibility (ϕ_{c}, in parenthesis).

is the only parameter requir specify the rd-disk fluid nontrivially. In the circular system when the inhomogeneity in atom aid, the one-particle distribution (the density profile) corresponds to the par dion fun n of the bulk. Hence, the value of the bulk radial distribution function at ont is here

$$
\begin{equation*}
g\left(d^{+}\right)=\rho_{0}\left(d^{+}\right) / \rho \tag{21}
\end{equation*}
$$

where the subscript indicates that the
One can also calculate the osmot

$$
\begin{equation*}
\phi_{\mathrm{c}}=\frac{1}{\rho} \int_{0}^{\rho} \frac{\mathrm{d} \rho^{\prime}}{\rho^{\prime} k_{\mathrm{B}} T \kappa_{T}} \tag{22}
\end{equation*}
$$

ut an atom fixed at the origin. ompressibility relation
where the isothermal compressibility κ_{T} is ven by

$$
\begin{align*}
& \rho k_{\mathrm{B}} T \kappa_{T}=[1+\rho \tilde{h}(0)] \equiv 1+\rho \tag{23}\\
& \text {-Starling (CS) equation of state for } h(r)
\end{align*}
$$

Table 1 compares the osmotic coefficient calculated by compressibility and virial, with Monte Carlo (MC) result It is m?
The Carnahan-Starling (CS) equation of state for hard-dis

$$
\phi^{\mathrm{CS}}=\frac{1}{(1-\eta)^{2}}
$$ performs better than the PY2, being in closer agreement with th relations. The PY3 virial and compressibility results are also more consistent than the

The compressibility osmotic coefficient is less reliable at hid densities. The radial distribution function decays more slowly at higher couplings, at it becomes e eedingly difficult to calculate the isothermal compressibility with numeric curacy. Thy , evident from the data in table 2, and is the reason that values for κ_{T} an ot usual bailable in numerical schemes.

The fundamental reason why PY3 performs better than PY2 is because the closure is used at a higher level in the hierarchy of distribution functions. The triplet and pair levels is the exact profile relationship. The computations ait dore demanding than the usual bulk numerical procedures (in general).

 $\rho d^{2}=0.794$.

Table 2. Isotherma npressibility, $\rho k_{\mathrm{B}} T \kappa_{T}$.

ρd^{2}	PY3	PY2
0.10	0.7305	0.7308
0.20	0.6594	0.6592
0.30	0.3649	0.3623
0.40	0.2813	0.2740
0.50	0.1375	0.1279
0.60	0.0952	0.0934
0.65	0.0873	0.0854
0.70	0.0588	0.0670
0.75	0.0340	0.0427

3.3. Pair and triplet distribution functions

We use equations (5), (6) and (15) simultaneously to obt the results as the expansion coefficients of the correlation functions and the density prose.

Figure 1 displays a comparison of the bulk radial distrib Aunction oiven by the MC, PY2, and PY3 approximations. In the latter approach, $g(r) \equiv \rho_{0}(r)$ the pronounced oscillations of the function quite accurately (and s Lengths here and below are in units of the hard-disk diameter d, in table 3 on a coarse grid in the $x-y$ plane. A direct compariso etween PY ${ }^{2}$ d PY2 is possible from the values below and above the diagonal respectively.

The inhomogeneous pair correlation function calculated in the P gives, when multiplied by ρ, the probability of finding an atom at \mathbf{r}_{2}, given ε_{2}), and the origin. Hence, it is simply related to the bulk triplet correlation fune

$$
g\left(0, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \equiv g\left(r_{1}\right) g\left(r_{2}\right) g_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

Table 3. Radial distribution function $g(r) \mathbf{r}=x \mathbf{i}+y \mathbf{j}$: PY3 (on and below) and PY2 (above) the diagonal $x=y$, for $\rho d^{2}=0.794$.

The triplet distribution function approac sity only hen all of the trio are far apart.
The Kirkwood superposition frox tion consists of approximating the inhomogeneous pair correlation eve

$$
\begin{equation*}
g_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \approx g\left(r_{12}\right) \tag{26}
\end{equation*}
$$

This approximation is exact asymptotically hen an three atoms is far separated from the others.

A direct and extensive test of the superposit approximatic can be made from the data in tables 4 and 5. These contain $g_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ on the me mesh as $)$ in table 3.

Figure 2 gives the PY3 radial distribution fun $\eta(r)$ at the der $\quad=0.730$. These are compared to the triplet correlation function $g(0$, for iso engle configurations, ($r_{1}=r_{2}=s, r_{12}=r$), divided by $g(s)^{2}$. This ratio (whi sust $g_{8 v}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right.$ pproaches $g(r)$ for large s or large r, as is to be expected from the a potic nature the superposition approximation.

4. Conclusion

In this paper a method has been given for treating circularly inho geneous syste ; in two dimensions, with integral equation theories. The full inhomogeneo pair correlatic unctions are available from the procedure. That the approach is practical was o onstrate the results obtained for a hard-disk fluid. Those data were more accurate than who re pair yre is used in the usual bulk formulation of the problem, evidently because the ap is being applied at a higher level in the hierarchy of distribution functions introduced in this paper allows application of this principle to more gen at fluids, in tw dimensions, and arbitrary closures, and at a further level (the triplet level) in the hierarchy.

Table 4. Inhomogeneous pair correlation function $g_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$, as a function of $\mathbf{r}_{2}=(x, y)$, with one disk fixed at the origin $(0,0)$ and the second at $\mathbf{r}_{1}=(0,1)$, and $\rho d^{2}=0.794$.

Table 5. Same as table 4, but with $\mathbf{r}_{1}=$

	0.00	0.25	0.50			1.00		5	1.5	1.75	2.00	2.25

Treating the inhomogeneous fluid at the two-particle level is equival describing three-body interaction, the fixed particle being the third member of the trio. As we know

Figure 2. The ogeneous pair relation function $g_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ for $\mathbf{r}_{1}=\mathbf{r}_{2}=s$ as a function of $r_{12}=r$, col ed to the PY ${ }^{2}$ distribution function $g(r)$ (solid line). The long dashes and short dashes cond to enpectively. The density is $\rho d^{2}=0.730$.
correlations reach to the bulk, one away from th particle and, according to the accuracy used in this paper, the two-level correlatione achieve the results and the triplet level is not required.

References

[1] Sokolowski S 1980 J. Chem. Phys. 733507
[2] Nieminen R M and Ashcroft N W 1981 Phys. Rev. A 24
[3] Borstnick B and Janezic D 1983 Mol. Phys. 501199
[4] Kjellander R and Mareelja S 1985 J. Chem. Phys. 822
[5] McGough R A and Miller M D 1986 Phys. Rev. A 344
[6] Plischke M and Henderson D 1986 J. Chem. Phys. 8428
[7] Attard P, Mitchell D J and Ninham B W 1988 J. Chem. Phys. 7
[8] Bruno E and Caccamo C 1988 Phys. Rev. A 38515
[9] Henderson D, Chen K Y and Degreve L 1994 J. Chem. Phys. 101
[10] Moradi M and Shahri H 2003 Int. J. Mod. Phys. B 176057
[11] Letz M and Latz A 1999 Phys. Rev. E 605865
[12] Moradi M and Khordad R 2006 J. Chem. Phys. 125214504
[13] Moradi M and Khordad R 2007 Physica A at press
[14] Hansen J P and McDonald I R 1986 Theory of Simple Liquids (London: Academ
[15] Lowen H 1994 Phys. Rep. 237249
[16] Singh Y 1991 Phys. Rep. 351207
[17] Ram J and Singh Y 1991 Phys. Rev. A 443718
[18] Boublik T 2001 J. Chem. Phys. 115925
[19] Fries P H and Patey G N 1985 J. Chem. Phys. 82429
[20] Baxter R J 1970 J. Chem. Phys. 524559
[21] Caillol J M, Levesque D and Weis J J 1981 Mol. Phys. 44733
[22] Triezenberg D G and Zwanzig R 1972 Phys. Rev. Lett. 281183
[23] Lovett R A, Mou C Y and Buff F P 1976 J. Chem. Phys. 581880
[24] Wertheim M S 1976 J. Chem. Phys. 652377
[25] Born M and Green H S 1946 Proc. R. Soc. A 18810
[26] Yvon J 1935 La Theorie Statistique des Fluids et L'Equation de'Etat Act vol 203 (Paris: Hermann et Cie)
[27] Bogoliubov N N 1946 VPhys. (Moscow) 10256
[28] Guo X and Riebel
Chem. Phys. 125144504
[29] Leutheusser ${ }^{\text {F }}$ Ch Phys. 841050
[30] Helfand Tisch H L J. Chem. Phys. 341037
[31] L oo Chem. Phys. 092
$\begin{array}{lll}{[32} \\ \text { [33] Chae D G, Ree } & \text { M L and Yu } & \text { S B } 1995 \text { J. Chem. Phys. } 1 \\ \text { and Ree T } & 9 \text { J. Chem. Phys. } 501581\end{array}$
[34] Kirkwood J G Chem . 3300

